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many of the literally hundreds of other well-charac- 
terized solution lumirearrangements will also be found 
to have totally different solid-state counterparts? Pe- 
rusal of the photochemical literature reveals a number 
of systems which may be expected to exhibit case I or 
case I1 behavior. In addition, there are several examples 
of systems which likely react via nonminimum energy 
conformations in solution and which might therefore 
show different photobehavior in the solid state via case 
I11 mechanisms. 

Not only is the synthetic potential of organic photo- 
chemistry enhanced by findings such as those reported 
in this Account, but with the use of X-ray crystallog- 
raphy, deeper insights into the mechanistic structure- 

reactivity relationships involved in organic photorear- 
rangements are possible. In short, studies of organic 
solid-state unimolecular photoprocesses are likely to 
provide fascinating and useful results for some time to 
come. 
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Long-range orientationally ordered states of liquids 
composed of elongated, flat molecules have been known 
for almost a century.l The simplest fluid-fluid tran- 
sition involving these “liquid crystal” systems takes 
place between the normal isotropic phase and a nematic 
state where the long molecular axes tend to lie along 
a preferred direction. But in the nematic state there 
is no long-range ordering of the centers of mass. Thus 
the system retains to a great extent many of the familiar 
properties, e.g., viscosity, characteristic of ordinary li- 
quids. Only in the solid phase do we find long-range 
ordering of both the molecular orientations and centers 
of mass: hence the name “liquid crystal” for the ne- 
matic state. 

In a liquid crystal, each molecule interacts with its 
neighbors via forces which depend on their mutual 
orientations. To “keep out of each other’s way”, Le., 
to minimize repulsions, a parallel configuration is op- 
timal; in addition this arrangement enhances the pair 
attractions. Recall that the thermodynamic free energy, 
A, is a balance between the total interaction energy, E ,  
and the temperature-weighted entropy, TS;  A = E - 
TS.  Thus, at  low enough temperature we expect that 
the lowering of E which comes about from parallel ar- 
rangements of molecules will become sufficient to offset 
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the decrease in S attendant upon this long-range 
alignment. The likelihood of this happening before the 
freezing (liquid -+ solid) temperature is reached de- 
pends of course on the intermolecular potential being 
properly anisotropic. The ultimate goal of any theory 
of liquid crystals must then be to account for why the 
phase diagrams for thousands of compounds include an 
“extra”, orientationally ordered fluid, region whereas 
those for hundreds of thousands of others show only the 
usual fluid and solid phasesa2 

The transition between isotropic and nematic states 
is observed to be first order, but the differences in 
density ( p ) ,  enthalpy (H), and entropy ( S )  between the 
coexisting phases are dramatically small. Consider, for 
example, the prototype liquid crystal forming molecule 
p-azoxyanisole (PAA) shown in Figure 1. When it is 
cooled below 408 K at  atmospheric pressure, it un- 
dergoes a first-order transformation from the isotropic 
to nematic phase: the associated discontinuities are as 
small as Ap/p = 0.0035, AH = 0.14 kcal/mol, and A S  
2 0.34 cal/(mol K).3 (Here p is the average of the 
densities of the coexisting phases.) Upon further 
cooling of the nematic state it is transformed near T = 
390 K to a solid; a t  the freezing transition the discon- 
tinuities are larger by one to two orders of 
magnitude-the values of A p / p ,  AH, and A S  are 0.11, 
7.1 kcal/mol, and 18 cal/(mol K).* 

Descriptions of the isotropic-nematic transition have 
been largely phenomenological,5 but recently there have 

(1) For mention of early work on liquid crystals, see the references 
given in the review by G. W. Gray, Adu. Liquid Crys t .  2, 1 (1976). 

(2) See, for example, the tabulations provided by D. Demus, H. De- 
mus, and H. Zaschke, Flussige-Kristallen in Tabellen (1974). 

(3) W. Maier and A. Saupe, Z. Naturforsch., A ,  14A, 882 (1959); 15A, 
287 (1960), for A p l ~ ;  H. Arnold, Z .  Phys. Chem. ( L e i p i g ) ,  226, 146 (19641, 
for AH and AS. 

( 4 )  B. Deloche, B. Cabane, and D. Jerome, Mol .  Cryst., 15, 1975 (1971). 
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the longer ranged, weaker attractions are mean field 
averaged. 
The van der Waals Picture 

Figure 1. Schematic rendering of the p-azoxyanisole (PAA) 
molecule. 

been attempts to provide a molecular-level statistical- 
mechanical theory. These latter attempts can be 
roughly divided into three categories according to 
whether the orientational ordering is assumed to be 
driven primarily by the angle-dependent attractions 
between molecules, by the anisotropic repulsive forces, 
or by both. Dominant in the first category are the 
Maier-Saupe-Luckhurst-Chandrasekhar mean-field 
theories in which all of the relevant thermodynamics 
is associated with an effective (mean) angle-dependent 
potential which acts separately on each molecule.6 
Basic to the second approach is the hard-rod reference 
system which has been treated alternately via lattice 
models7 and classical liquid theorieses The effects of 
anisotropy in both the intermolecular attractions and 
repulsions have been treated by Kimurag for low-density 
fluids and by Ypma and VertogenlO via perturbation 
expansions about an isotropic reference system. Shih, 
Lin-Liu, and Wool1 have also included both repulsions 
and attractions, handling the spatial correlations by 
means of a conventional liquid theory and subjecting 
the orientational ordering alone to a mean-field ap- 
proximation. 

For the general case of arbitrary fluid density and 
molecular anisotropy, it has proved most useful to em- 
ploy the van der Waals approach12-14 which is the sub- 
ject of this Account; here the hard-anisotropic-core re- 
pulsions are treated as accurately as possible whereas 

(5) See the monographs by P. G. de Gennes (“The Physics of Liquid 
Crystals”, Oxford University Press, Oxford, 1974), E. B. Priestley, P. J. 
Wojtowicz, and P. Sheng (“Introduction to Liquid Crystals”, Plenum 
Press, New York, 1974), and S. Chandrasekhar (“Liquid Crystals”, Cam- 
bridge University Press, London, 1977) for comprehensive discussion of 
the Landau (de Gennes) and continuum (hydrodynamic-viscoelastic) 
theories of liquid crystals. These theories are also discussed extensively 
in M. J. Stephen and J. P. Straley, Reu. Mod. Phys., 46, 617 (1974). 

(6) These developments are reviewed, with appropriate lists of refer- 
ences, in the already cited5 monographs by Priestley et  al. (Chapter 2) 
and Chandrasekhar (Chapter 2). 

(7) F. Dowel1 and D. E. Martire, J .  Chem. Phys., 68, 1088, 1094 (1978), 
and references cited therein. 

(8) M. A. Cotter, in “Proceedings of the NATO Advanced Study In- 
stitute on The Molecular Physics of Liquid Crystals”, G. W. Gray and 
G. R. Luckhurst, Eds., Plenum Press, New York, 1978; see also J. D. 
Parsons, Phys. Reu. A ,  19,1225 (1979); R. Pynn, J.  Chem. Phys. 60,4579 
(1974); Solid State Commun., 14, 29 (1974). 

(9) H. Kimura, J .  Phys. Soc. Jpn., 36, 1280 (1974). 
(10) J. G. T. Ypma and G. Vertogen, Phys. Reu. A ,  17, 1490 (1978). 
(11) Y. M. Shih, Y. R. Lin-Liu, and C.-W. Woo, Phys. Reu. A ,  14,1895 

(1976). 
(12) (a) W. M. Gelbart and B. A. Baron, J .  Chem. Phys., 66, 207 

(1977); (b) W. M. Gelbart and A. Gelbart, Mol. Phys., 33, 1387 (1977); 
(c) B. A. Baron and W. M. Gelbart, J .  Chem. Phys., 67, 5745 (1977). 

(13) (a) M. A. Cotter, J.  Chem. Phys., 66, 1098 (1977); (b) ibid., 67, 
4268 (19771, and “The Van der Waals Approach to Nematic Liquids”, in 
ref 8. 

(14) A. Wulf, J .  Chem. Phys., 67, 2254 (1977). 

Over a hundred years ago, van der Waals suggested15 
that the structure and thermodynamic properties of 
simple fluids could be interpreted in terms of nearly 
separate contributions from intermolecular repulsions 
and attractions. He asserted in particular that the re- 
pulsive forces were the same as for “hard spheres” and 
that the attractive potential of “mean field” felt by a 
molecule was essentially uniform, since it involved a 
sum over many long-range and slowly varying pair in- 
teractions. The depth of this negative background is 
proportional to the number of molecules contributing 
to it, and hence to the number density p N /  V; thus 
the potential energy per molecule is 

7 7 1  u i  
- = -up (a  c 0) N 2  

We have chosen a” for the proportionality constant 
here to be consistent with the notation in our earlier 
work.12 

Because the background attraction has no gradient, 
it leads to no forces on the hard spheres which are 
“immersed” in it, and the equilibrium configuration of 
the latter is the same as if only the repulsions were 
present.16 Then it follows that 

where S is the configurational entropy of the hard 
sphere (hs) system in the presence of the uniform at- 

= 0), we have 

s = s h e  (2) 

traction. From (1) and ( 2 ) ,  and Ah = -TSh = - T s  (Ehs 

If we replace the hard-sphere pressure P h s  by the 
appropriate (exact) form for a one-dimensional system, 
i.e., Ph = p h T / ( l -  bp) where b is half the pair excluded 
volume, then (3) becomes the familiar van der Waals 
(VDW) equation. When, however, Phs is allowed to 
represent the actual pressure of a three-dimensional 
hard-sphere fluid, then the resulting generalized van 
der Waals (GVDW) equation of state is expected to 
work well in describing the properties of simple dense 
fluids away from their critical points. 

For example, when Phs is taken from the computer 
studies of Alder and Wain~r ight , ’~  calculations of sev- 
eral dimensionless thermodynamic properties, e.g., the 
ratio of liquid to solid volume or the molecular entropy 
of fusion in units of Boltzmann’s constant, have been 
shown16b to agree very clos,ely with experimental data 
on argon near its triple point. Furthermore, eq 3 has 
been derived from “first principles” by Kac, Uhlenbeck, 
and Hemmer,ls who studied the statistical mechanics 
of systems interacting via pair potentials which can be 

(15) J. D. van der Waals, Dissertation, Leiden, 1873; English transla- 
tion, Threlfall and Adair, Phys. Memoirs, 1, 333 (1890). 

(16) Here we follow the exposition of van der Waals theory given by 
(a) B. Widom, Science, 157, 375 (1967); (b) H. C. Longuet-Higgins and 
B. Widom, Mol. Phys., 8, 549 (1964). 

(17) B. J. Alder and T. E. Wainwright, J.  Chem. Phys., 33,1439 (1960). 
(18) G. Stell, J. L. Lebowitz, S. Baer, and W. Theumann (J .  Math. 

Phys., 7, 1532 (1966)) and M. Kac, G. E. Uhlenbeck, and P. C. Hemmer 
(ibid., 4, 216 (1963)) are among the latest and earliest of the original series 
of papers on GVDW theory. 
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decomposed into a hard-core repulsion plus an attrac- 
tion having magnitude -y and range - l /y .  They 
showed that eq 3 is exact in the limit y - 0. 

Recall that  eq 3 is equivalent to the Helmholtz free 
energy having the form 

(4) 

$ = Pa (5) 
is the mean attraction felt by a single molecule ( E  = 
IlzN\k),  and a is the average value of the pair 
attraction-according to van der Waals15 it is given by 

AGVDW = Ahs + ‘/N$ 
where 

The prime on the integral in (6) assures that the average 
is taken only over those separations r which do not 
violate the pair-excluded volume conditions; Le., for 
hard spheres of diameter u we have Irl 1. u. 

Gelbart and Baron12a showed that eq 4-6 could be 
generalized. Their original derivation has been super- 
ceded by a more recent fo rm~la t ion ’~  in which the at- 
omic fluid approach18 is followed more closely. In 
particular, when the GVDW theory is applied to mo- 
lecular fluids whose pair interactions are orientation 
dependent and which in addition can exist in liquid 
cystal phases, we find 

A G V D W [ ~ ( ~ ~ ) ]  = AhC[f(R)l + (1/2)NJdfif(fi)$(Q) (4’) 

where 

$( R) = p J dVf( R’) a ( R,R’) (5’)  

is the mean field felt by a single molecule when it has 
orientation R, and 

a(s2,R’) = J’dr uat&;Q,Q’) (6’) 

is the average value of the pair attraction between two 
molecules having orientations s2 and R’. The prime on 
the r integral restricts the averaging to those values for 
which the hard cores, with orientations R and R’, do not 
penetrate each other. f(Q) denotes the fraction of 
molecules with orientation R: f ( R )  = constant (=l/ 
JdR) for the isotropic state of the liquid. Finally, 
Ah,[f(Q)] is the Helmholtz free energy which would be 
calculated for a fluid of molecules which interact only 
via hard core (hc) repulsions and whose orientational 
distribution is f(R).  We emphasize that f (R)  minimizes 
the full A, not Ahc. Having determined the dependence 
of A on f(s2), T ,  N, and V (or p ) ,  the remaining ther- 
modynamic functions follow from the usual partial 
derivatives: S = -(dA/dT)V,N,f(n), P = -(dA/dV)Tsv,f(n), 
and = (~3A/dN)T,y,f(~), Thus a complete specification 
of the phase transition depends on the choice of Ahc  and 
$. 

I t  is interesting to note that in the case where the 
molecular hard cores are allowed to become hard 
spheres, i.e., all anisotropy in the repulsive forces is 
neglected, and uattr(rR,R’) is taken to  have its disper- 
sional (long-range) form, minimization of the A[f(R)] 
in eq 4’-6’ leadslZa to a self-consistency relation for f (R)  
which is identical with that of the familiar Maier-Saupe 

(19) M. A. Cotter, J .  Chem. Phys., 66, 4710 (1977). 

t h e ~ r y . ~  But instead of a phenomenological parameter 
specifying the strength of the mean-field potential, we 
obtain an explicit expression involving the dispersional 
coefficients, the molecular size, the density, and the 
t e m p e r a t ~ r e . ~ ~ ~ ~ ~ ~  

Finally, in the case of no attractions ($ = 0) the 
GVDW theory reduces trivially to the hard-particle 
theory mentioned earlier. 

The calculation of A h c  requires a statistical-mechan- 
ical theory of dense fluids whose particles interact via 
nonspherical hard core repulsions. To date, the primary 
molecular level approach which has been used to de- 
termine the functional dependence of Ahc on f(R) is the 
scaled particle theory (SPT) which was originally de- 
veloped20 to treat fluids of spherical particles. But in 
the case of liquid crystals it can be shown21,22 that 
thermodynamic inconsistencies arise from application 
of this theory. Accordingly we were led to consider a 
completely different approach to the description of the 
hard-particle reference system. 
The Hard-Particle Reference System 

The y Expansion for Isotropic States of Hard- 
Particle Fluids. The idea of expanding thermody- 
namic functions in powers of quantities other than the 
density is not new; activity (fugacity) expansions, for 
example, are well known.z3 Our particular choice of 
expansion variable arose naturallyz4 from a critical 
study” of the scaled particle theory. But we proceed 
now by simply defining the quantity 

d - vo P 
y=-=- 1 - v o p  1 - d  ( 7 )  

and considering the exact equation of state as an infi- 
nite-order power series in y 

vo is the hard particle volume. 
Assuming the convergence of the usual virial series 

D m  

vo = Bndn (9) kT 
and resumming it into the form of (8 ) ,  we find 

Thus the first n terms in the y expansion (eq 8) are 
completely determined by the first n virial coefficients. 

Consider first the case of a hard-sphere fluid. Here 
the values of the first four virial coefficients are known 
e~act ly , ’~ allowing us to determine-via eq 10-the first 
four C,; in addition, B5 has been evaluatedz6 by Monte 
Carlo techniques with sufficient accuracy to provide 
meaningful determination of the corresponding C5. The 
y expansion is found to converge very quickly, over the 

(20) H. Reiss, H. L. Frisch, and J. L. Lebowitz, J .  Chem. Phys., 31, 369 
(1959); review by H. Reiss in “Statistical Mechanics‘ and Statistical 
Methods in Theory and Application”, V. Landman, Ed., Plenum Press, 
New York, 1977. 

(21) (a) G. Lasher, J.  Chem. Phys., 53,4141 (1970); (b) R. M. Gibbons, 
Mal. Phys., 18,809 (1970); (e) M. A. Cotter, Phys. Reu. A ,  10,625 (1974); 
see also ref 8 and 13. 

(22) E. Barboy and W. M. Gelbart, J .  Stat .  Phys., 22, 685 (1980). 
(23) T. L. Hill, “Statistical Mechanics”, McGraw-Hill, New York, 1956. 
(24) B. Barboy and W. M. Gelbart, J .  Chem. Phys., 71, 3053 (1979). 
(25) K. W. Kratky, Physica, 87A, 584 (1977). 
(26) F. H. Ree and W. G. Hoover, J .  Chem. Phys., 46, 4181 (1967). 
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Figure 2. Pressure (P) vs. density ( p )  equation of state for the 
hard-sphere (hs) fluid; vo is the volume of a single particle. The 
curves labeled by Y,  and B, correspond to the n-term truncations 
of the y expansion and virial series, respectively. (0) Molecular 
dynamics data;18 (x) [3,3] Pad6 appr~ximant; '~ (A) [4,3] 

entire fluid range (Le., uop 5 0.51, in marked contrast 
to the slowly converging virial series. In fact, keeping 
only three terms in (8) gives (since C1 = 1, C2 = 3, and 
c3 = 3) 

phs  = ("> + 3( -q2 + 3( L) 3 (11) ' O h T  1 - d  1 - d  1 - d  

an equation of state for hard spheres which is identical 
with that obtained from the Percus-Yevick (PY)27 and 
scaled-particle (SP)20 theories! Equation 11 is known 
to provide a good description of the hard-sphere pres- 
sure up to the maximum liquid densities. Thus we 
expect that  keeping an additional term in the y ex- 
pansion will give an even better equation of state. This 
is shown in Figure 2 where we plot Phs/pkT vs. uop for 
the three- and four-term truncations (henceforth de- 
noted Y3 and Y4) of the series (eq 8). These results are 
compared there with molecular dynamics (MD) data,17 
Pad6 approximants,26 and the three, four-, and seven- 
term truncations of the virial series (B3, B4, &). Note 
that Y3, determined completely by B1, B2, and B3, gives 
as accurate a pressure as does the [4,3] Pad6 approxi- 
mant which requires four additional, higher order virial 
coefficients. 

T o  test the ability of eq 8 to describe the thermody- 
namics of reference systems composed of nonspherical 
particles, consider a fluid of fused-sphere homonuclear 
dumbbells. For the case considered in Figure 3, Monte 
Carlo (MC) evaluations of B3 and B4 are available,28,so 
that we can compute simply the three- and four-term 

(27) J. K. Percus and G. J. Yevick, Phys. Rev., 110,l  (1958); E. Thiele, 
J .  Chem. Phys., 39,474 (1963); M. S. Wertheim, Phys. Rev. Lett., 10,321 
(1963). 

(28) M. Rigby, J .  Chem. Phys., 53, 1021 (1970). 
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Figure 3. P vs. p for fluid of fused-sphere homonuclear dumb 
bells with 1 = 0.6~.  The Monte Carlo data are shown by circlesma 
and crosses.2Qb 

truncations of the y expansion. Figure 3 compares these 
results for Y3 and Y4 with MC results29 for P / p k T  and 
with the corresponding truncated virial series. Again 
the y expansion converges quickly, with Y3 and Y4 
bracketing the MC data and providing a better repre- 
sentation of the pressure than do the much more com- 
plicated determinations from Percus-Yevick (PY)30 and 
reference-interaction-site-model (RISM)29 theories. 

Many other examples of the Y3 and Y4 representation 
of hard particle fluids and mixtures have been given in 
our earlier We have also discussed various im- 
provements and extensions31 of this basic starting point. 
But for our present purpose it suffices to note that Y3 
provides a very good approximation to thermodynamic 
functions of hard particle liquids and that to do so 
requires only the second and third virial coefficients. 
To treat the possibility of long-range orientational or- 
dering, however, we need first to generalize the y ex- 
pansion to the case of multicomponent systems in- 
volving arbitrary nonspherical hard cores. This equa- 
tion of state describes the thermodynamics of a pure 
fluid, e.g., liquid crystal, as soon as each of the distin- 
guishable components of the mixture is associated with 
a different orientation of the nonspherical particle.32 

The y Expansion for Mixtures and Liquid 
Crystals. The generalization of eq 8 to the case of an 
A4 component mixture gives24,31 

Here 

(29) I. Aviram, D. J. Tildesley, and W. B. Streett, Mol. Phys., 34, 881 

(30) Y. D. Chen and W. A. Steele, J .  Chem. Phys., 54, 703 (1971). 
(31) B. Barboy and W. M. Gelbart, J .  Stat. Phys., 22, 709 (1980). 

(1977); B. C. Freasier, Chem. Phys. Lett., 25, 280 (1975). 

(32) L. Onsager, Ann. N.Y. Acad. Sci., 51, 627 (1949). 
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where x k  is the fraction of “k” particles. v0l is the 
volume of the lth species’ hard core. Note that, when 
all the species are identical except for each corre- 
sponding to a different orientation, we have 

M 

1=1 
vo1- vo c PI - P 

The coefficients Cil,,,iM are given by a generalization of 
(10): 

M M 

k = l  k = l  
n = C i k  m = C j k  

The B;l,,.jM are the usual multicomponent-mixture virial 
 coefficient^.^^ 

Equation 12 for the pressure follows, via P = -(dA/ 
C ~ A ) ~ , ~ , , ~ ~ J ,  from the virial expansion for A and rela- 
tionship 13 between B and C coefficients. Similarly, the 
chemical potential of the hth species is obtained from 
p k  = ( ~ 3 A / d N ~ ) ~ , ~ , ( ~ , i , + ~ .  From this point on we shall take 
all particles to have the same nonspherical hard core, 
each species corresponding to a different orientation. 
Thus (12A) holds and x k  gives the fraction of molecules 
having orientation k .  In the “continuum limit”,32 x k  - 
x(k) - f(ak) - f(Q) is the usual orientational distri- 
bution function. -’o find the isotropic liquid crystal 
equilibrium we seek a f x k l  [or f(Q)] and p for each phase 
so that A is minimized subject to equal P and p. 

The Effective Attraction 
Recall the definition of the mean field $(Q, according 

to eq 5’-6’. his effective attraction, acting separately 
on each mo-ecule, can be calculated as soon as we 
specify uattr(r; Q,Q’) and the hard-core size and shape. 
Suppose we have in mind the dispersional interaction 
between two cylindrically symmetric molecules whose 
long axes make an angle (fl,,Q,) with each other. Then 

where the coefficients Ciso and Caniso are related to the 
average value and difference, respectively, of the mo- 
lecular polarizability tensor  component^.^^ For phys- 
ically reasonable values of Ciso and Caniso, Gelbart and 
Gelbartlzb have shown that the effective attraction can 
be expressed to an excellent approximation in the form 

(15) 

where lAol and lA21 are both independent of density and 
temperature. Here 7 (P2(cos 8))  = JdQf(Q)P,(Q) is 
the long-range orientational-order parameter, P,(cos 19) 
= 3/2 cos2 8 - is the second Legendre polynomial, and 
8 is the angle between the long molecular axis and the 
space-fixed, “preferred” direction. A t  the transition 

(33) J. E. Mayer, Hand. Phys., 12, (1958). 
(34) See, for example, H. Margenau and N. Kestner, “Intermolecular 

$ ( Q )  = -IAob - IAzlP7P2(Q2) 

Forces”, Pergamon, London, 1969. 

from isotropic to nematic phases, 7 changes from 
zero-since (cos2 8)  = when all 8’s are equally 
likely-to a value of a few tenths ((cos2 8 )  = 1 and 
hence 7 = 1 only for complete ordering), 

Most significantly, it is the isotropic term in uattr 
which makes the dominant contribution to IA2(, the 
coefficient of the angle-dependent term in the mean 
field. This comes about because the anisotropic re- 
pulsions build in short-range correlations between the 
molecular orientations and their separation vector. 
Recall from eq 5’-6’ that the hard core enters via the 
prime in the mean field averaging which excludes all 
relative positions denied to a pair of particles by their 
“shape repulsions” (excluded volume). I t  is precisely 
this anisotropy of the molecular cores which allows the 
-Ciso/r6 term in uattr to dominate the angle dependence 
in 4. 

Suppose, in fact, that uattr had no anisotropy what- 
soever, i.e., it depended only on the distance ( r )  between 
centers of mass. Now imagine that we sit on a molecule 
in the nematic phase and enquire of its average at- 
traction to the other molecules. Because most of its 
neighbors lie along some preferred direction, this av- 
erage attraction will be a maximum when the molecule 
also lies along this direction, for then, given its prolate 
shape, it will be able to get closer to the others and 
hence interact more strongly. Conversely if it lies 
perpendicular, the average attraction will be a mini- 
mum. In this way the mean field ($) acquires angle 
dependence from the hard core asymmetry. 

Thermodynamic Calculations a n d  Discussion 
The above described GVDW theory provides an a 

priori and self-consistent description of the dependence 
of the isotropic-nematic transition temperature on 
molecular anisotropy and correctly describes the relative 
roles of repulsions and attractions in driving the ori- 
entational ordering. In particular, it establishes that 
the average attraction felt by a molecule acquires its 
orientation dependence primarily from the anisotropy 
of the hard-core repulsions. The thermodynamic trends 
found for the isotropic-nematic phase transitions are 
thereby interpreted in explicit terms of the two sources 
of local anisotropy: (1) the direct effect of the hard rod 
repulsions-see Ah,[f(Q)] in eq 4’-and (2) their indirect 
contributions to the angle-dependent part of $( Q)-see 
the second term in eq 4’. 

By minimization of AGbDW in (4’) with respect to f(Q), 
subject to the constraint of equal pressures and chem- 
ical potentials, transition temperatures and coexisting 
densities and f(fl)’s have been calculated. For sphero- 
cylindrical hard cores having length-to-width ratio x = 
3 and volume vo = 230 A3,35a Cotter13a chose the form 
(15) for $ ( Q ) ,  set empirically (voh)-l[Ao[ = 25000 K and 
(uok)-11A21 = 2000 K,35b approximated Ah,[f(Q)] from 
SPT, and carried out extensive computations over a 
wide range of pressure. Whereas quite satisfactory 
agreement between theory and experiment is achieved 
for several properties, the calculations dramatically 
overestimate the strength of the transition: the dis- 
continuities Apjp,  AS,  and AH are much too large. 

(35) (a) These values of x and vo for PAA are estimated from the 
known molecular geometry and atomic radii. (b) (uok)-’lAo,nl were chosen 
primarily to reproduce the observed temperature and density dependence 
of q ,  but (uok)-’(Aol = 25000 K is essentially the value which would be 
estimated from the heat of vaporization for PAA. 
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Baron and GelbartlZc have also reported numerical 
evaluations of the GVDW theory for PAA. They used 
the same x and uo to define the spherocylindrical hard 
core and the same SPT to express A h c  as a function of 
f(Q). But instead of using an empirical choice for $(!d), 
they determined it a priori as described above in the 
previous section. Their results are qualitatively similar 
to those of Cotter. 

By including the appropriate variations in molecular 
size (v,,), shape (x ) ,  and polarizability characteristics (Ciw 
and Caniso), GVDW predictions have been made of how 
Ttransition will vary through different homologous series 
of compounds.12c At  the same time, precisely because 
the GVDW theory insists on committing itself to a 
particular choice of pair potential ( u h c  + uattr), its pre- 
dictions of many phase transition properties cannot be 
satisfactorily compared with experiment. 

For example, it is now well established that the 
flexibility of the saturated hydrocarbon end chains, e.g., 
consider PAA (Figure 1) with OCH3 - OC,Hz,+l, ac- 
counts for the “odd-even” effects observed for a wide 
variety of homologous series.36 The “zigzag” structure 
of these end chains and the loss of rigidity as n becomes 
large cannot be included easily in the GVDW approach. 
Similarly, it is not uncommon for a small change in 
substituents to give a huge change in isotropic-nematic 
and liquid-solid transition temperatures. Replacing a 
terminal alkoxy by the corresponding alkyl, for example, 
can cause the complete disappearance of the nematic 
phase. Such effects have not yet been accounted for 
by an a priori theory. In fact, prediction of the “loss” 
of liquid crystallinity requires a comparable level de- 
scription of the freezing transition, for-as long as there 
is an anisotropy in the intermolecular potential-all 
theories of the isotropic-nematic phase transition pre- 
dict that the liquid crystal phase will eventually appear 
as the temperature is lowered. Thus it is insufficient 
to simply describe the lowering of TI-N upon end-group 
substitution, say, since we must know in addition 
whether TI+ still lies above (the new) Tliq-solid. 

Nevertheless, on the basis of the work discussed in 
this Account, it is now reasonably well agreed that a 
liquid crystal is no different from a “simple” molecular 
liquid insofar as the importance of short-range repul- 
sions is concerned. In both cases a van der Waals ap- 
proach is natural, leaving us with the problem of de- 
veloping adequate statistical-mechanical theories for the 
relevant hard-core reference system. For atomic and 
simple molecular fluids, the hard sphere is obviously 
the appropriate choice; this reference system has been 
thoroughly and successfully investigated by means of 
several different analytical and numerical methods.37 
In the case of liquid crystals, on the other hand, many 
choices of hard core present themselves, each with 
different shape and symmetry. Furthermore, even for 
the simplest hard core-the axially symmetric 
spherocylinder-serious problems pervade both the 
analytical and numerical methods which have been used 
to calculate macroscopic properties. And Monte Carlo 
evaluations fail completely to obtain a liquid crystal 
phase.38 Thus there is a t  present no direct numerical 

(36) S. Marcelja, J .  Chern. Phys., 60, 3599 (1974). 
(37) See, for example, the review by J. A. Barker and D. Henderson, 

(38) J. Vieillard-Baron, Mol. Phys., 28,809 (1974); J. Kushick and B. 
Rev. Mod. Phys., 48, 587 (1976). 

J. Berne, J .  Chern. Phys., 64, 1362 (1976). 
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Figure 4. Y3 results for qtrmSltlon (see left-side ordinate scale) and 
for A p / p  (right side ordinate). The liquid is composed of hard 
rectangular parallelipipeds with dimensions a = 1, b, and c = 5 .  

test of analytical theories of the nematic state. 
Equally significant is the fact that even an exact 

description of the hard-core reference system will not 
suffice if the particle shape and symmetry are not 
chosen properly. To date both the scaled particle 
theories and the computer simulations have only con- 
sidered molecules which possess cylindrical symmetry. 
Similarly, the GVDW calculations, and virtually all of 
the Maier-Saupe-Luckhurst-Chandrasekhar mean- 
field descriptions, have assumed axial shapes for the 
liquid crystal forming compounds. Several investigators 
have suggested, however, that even small deviations 
from axial symmetry can account for important qual- 
itative features of the isotropic-nematic 
To allow for this possibility, recall that we found a “Y3” 
level is sufficient to obtain accurate thermodynamic 
functions over the full liquid range of densities. Thus 
we might argue that the first three terms (n I 3) in eq 
12 lead directly to the necessary expressions for the 
pressure (Phc) ,  Helmholtz free energy (Ahc) ,  and chem- 
ical potentials ( {p, ] ) .  We “simply” need to determine 
the C coefficients appropriate to the lower-than-axial 
symmetries of interest. 

The problem, of course, is that, even for the simplest 
possible nonspherical shapes, Bn=3 (necessary for C3- 
see eq 13) has not been evaluated analytically for ar- 
bitrary orientations of the triplets of hard particles. 
However, if we consider only those orientations for 
which the principal axes of the particles are coincident 
with those of a space-fixed reference frame,42 then it is 
straightforward to determine all the relevant expansion 
coefficients-for many nonspherical shapes. In par- 
ticular we wish to consider molecules which have low- 
er-than-cylindrical symmetry, i.e., those which are in- 
termediate between rodlike and platelike. To illustrate 
the effects of symmetry most simply, it is convenient 
to work with rectangular parallelipipeds having di- 
mensions a I b I c (with a and c fixed, c > a) .  In the 
limits a = b C c and a C b = c we recover the rod and 
plate shapes, respectively. Otherwise (a Z b # c) the 
particles do not have axial symmetry. We search for 
an isotropic - uniaxial phase transition for each value 
of b and compute the discontinuities in density, A p l p ,  

(39) C. S. Shih and R. Alben, J .  Chern. Phys., 57, 3055 (1972). 
(40) J. P. Straley, Phys. Reu. A, 10, 1881 (1974). 
(41) G. R. Luckhurst, C. Zannoni, P. L. Nordro, and U. Segre, Mol. 

(42) Suggestions of this kind go back to R. W. Zwanzig, J .  Chern. 
Phys., 30, 1345 (1975). 

Phys., 39, 1714 (1967). 
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and orientational order, AT = runlaxial = C!=l~LP1. 
(cos Oh), where O h  is the angle between the space-fixed 
z direction and the long axis of the particle having 
orientation h. Note that for principal axes constrained 
to lie along the space-fixed directions, only six orien- 
tations are allowed.43 

a t  the transition 
in the case a = 1, c = 5 ,  and a < b < c. In ref 44 we 
presented similar results for Yz. For b = 1, the rod 
limit, only nematic (long-axis) ordering is possible and 
vtrans is as large as 0.72, almost twice the typical ex- 
perimental value reported in the literature. The figure 
also shows our results for Ap/p: for b = 1, A p / y  is found 
to be as large as 0.066, more than ten times the fa- 
miliarly observed values and comparable to the values 
found in the GVDW c a l c ~ l a t i o n s ~ ~ ~ J ~ ~  mentioned ear- 
lier. As b increases, however, the “rod” becomes more 
platelike and both Ttrms and Ap/p decrease dramatically. 
For a special intermediate value of b = b* (=2.25), in 
fact, both these discontinuities vanish identically. This 
is the point where the tendencies to form nematic 
(long-axis-ordered) and planar (short-axis-ordered) 
uniaxial states become equal. Then, for b > b* the 
particles are more platelike than rodlike and it is the 
short axes which tend to line up in the uniaxial phase. 
In this case v-the excess fraction of particles whose 
long axes lie along the preferred direction-is of course 
negative. Note that the qualitative behavior shown in 
Figure 4-in particular the zero for some intermediate 
nonaxial shape-is independent of our choice of particle 
type (i.e., rectangular parallelipiped vs. ellipsoid, etc.) 
and of restricted orientations: it follows from general 
symmetry considerations. 

Concluding Remarks 
I t  is clear from Figure 4 why most theory to date, 

constraining the molecular symmetry to be rodlike, has 
overestimated the first orderness of the isotropic-ne- 
matic transition. Because nature’s easiest way to make 
stable, anisotropic molecules is by conjugating benzene 
rings, the prototype liquid crystal forming species are 
those based on cores of biphenyl, azobenzene, azoxy- 
benzene, naphthalene, etc. In all these cases, because 
of the diameter and thickness of the benzene rings, the 
molecular shapes correspond to the region of Figure 4 
just to the left of b*. 

According to the theory presented above, liquids of 
molecules whose shapes are pure platelike or rodlike 
should show relatively large discontinuities a t  the iso- 

Figure 4 shows our Y3 results for 

(43) See, however, J. P. Straley, J .  Chem. Phqs., 57, 3694 (1972), and 

(44) W. M. Gelbart and B. Barboy, Mol. Crys t  Liq. Cryst. ,  55 ,  209 
ref 31. 

(1979). 
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Figure 5. Schematic drawings of (here R = CnHln+J (A) benzene 
hexa-n-alkanoates and (B) 2,3,6,7,10,11-hexaalkoxytriphenylenes. 

tropic uniaxial phase transition. For “plates” this is in 
fact observed to be the case. (Molecular liquids com- 
posed of pure “rods” have not yet been realized.) 
Chandrasekhar et  al.45 have, for example, studied 
benzene derivatives of the form shown in Figure 5A. 
Using the Clausius-Clayperon equation and their 
measured values of @/AT (along the isotropic-discotic 
equilibrium curve), AH, Ttrans, and the density of the 
isotropic phase, we find A V / V  = 0.01 for the n = 7 
derivative shown in Figure 5A. The planar liquid 
crystal phases of other disklike molecules have also been 
s t ~ d i e d ; ~ ~ , ~ ~  Billard et have measured latent heats 
a t  the isotropic-discotic transitions undergone by the 
compounds shown in Figure 5B. U / A T  data are not 
yet available for these systems, but the observed AH 
values are -1-2 kcal/mol for n = 5 and 7, with corre- 
sponding transition temperatures of -3380 K. Thus the 
entropy changes are as large as 3-5 cal/(mol K), con- 
sistent with the strong first-order phase change ex- 
pected from our theory. 
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